Bounding the number of zeros of certain Abelian integrals
نویسندگان
چکیده
منابع مشابه
LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملlinear estimate of the number of zeros of abelian integrals for a kind of quintic hamiltonians
we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملlinear estimate of the number of zeros of abelian integrals for a kind of quintic hamiltonians
we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملThe Quotient of Certain Abelian Integrals
We prove that the quotient of abelian integrals associated to an elliptic surface is bounded and strictly increasing by first determining the Picard-Fuchs equation satisfied by the a,belian integrals and the Riccati equation satisfied by the quotient of the abelian integrals.
متن کاملLinear Estimate of the Number of Zeros of Abelian Integrals for a Kind of Quintic Hamiltonians
We consider the number of zeros of the integral I(h) = ∮ Γh ω of real polynomial form ω of degree not greater than n over a family of vanishing cycles on curves Γh : y 2 + 3x − x = h, where the integral is considered as a function of the parameter h. We prove that the number of zeros of I(h), for 0 < h < 2, is bounded above by 2[n−1 2 ] + 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2011
ISSN: 0022-0396
DOI: 10.1016/j.jde.2011.05.026